Evaluation of Z-VAD-FMK as an anti-apoptotic drug to prevent granulosa cell apoptosis and follicular death after human ovarian tissue transplantation

评估 Z-VAD-FMK 作为抗凋亡药物预防人卵巢组织移植后颗粒细胞凋亡和卵泡死亡的效果

阅读:5
作者:Maïté Fransolet, Laure Noël, Laurie Henry, Soraya Labied, Silvia Blacher, Michelle Nisolle, Carine Munaut

Conclusions

In situ administration of Z-VAD-FMK slightly improves primary follicular preservation and reduces global apoptosis after 3 weeks of transplantation. Data presented herein will help to guide further researches towards a combined approach targeting multiple cell death pathways, angiogenesis stimulation, and follicular recruitment inhibition.

Methods

In vitro, granulosa cells were exposed to hypoxic conditions, reproducing early ischemia after ovarian tissue transplantation, and treated with Z-VAD-FMK (50 μM). In vivo, cryopreserved human ovarian fragments (n = 39) were embedded in a collagen matrix containing or not Z-VAD-FMK (50 μM) and xenotransplanted on SCID mice ovaries for 3 days or 3 weeks.

Purpose

To evaluate the efficiency of ovarian tissue treatment with Z-VAD-FMK, a broad-spectrum caspase inhibitor, to prevent follicle loss induced by ischemia/reperfusion injury after transplantation.

Results

In vitro, Z-VAD-FMK maintained the metabolic activity of granulosa cells, reduced HGL5 cell death, and decreased PARP cleavage. In vivo, no improvement of follicular pool and global tissue preservation was observed with Z-VAD-FMK in ovarian tissue recovered 3-days post-grafting. Conversely, after 3 weeks of transplantation, the primary follicular density was higher in fragments treated with Z-VAD-FMK. This improvement was associated with a decreased percentage of apoptosis in the tissue. Conclusions: In situ administration of Z-VAD-FMK slightly improves primary follicular preservation and reduces global apoptosis after 3 weeks of transplantation. Data presented herein will help to guide further researches towards a combined approach targeting multiple cell death pathways, angiogenesis stimulation, and follicular recruitment inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。