Bone Marrow-Derived Mesenchymal Stem Cells Improve Diabetic Neuropathy by Direct Modulation of Both Angiogenesis and Myelination in Peripheral Nerves

骨髓间充质干细胞通过直接调节周围神经的血管生成和髓鞘形成来改善糖尿病神经病变

阅读:14
作者:Ji Woong Han, Dabin Choi, Min Young Lee, Yang Hoon Huh, Young-sup Yoon

Abstract

Recent evidence has suggested that diabetic neuropathy (DN) is pathophysiologically related to both impaired angiogenesis and a deficiency of neurotrophic factors in the nerves. It is widely known that vascular and neural growths are intimately associated. Mesenchymal stem cells (MSCs) promote angiogenesis in ischemic diseases and have neuroprotective effects, particularly on Schwann cells. Accordingly, we investigated whether DN could be improved by local transplantation of MSCs by augmenting angiogenesis and neural regeneration such as remyelination. In sciatic nerves of streptozotocin (STZ)-induced diabetic rats, motor and sensory nerve conduction velocities (NCVs) and capillary density were reduced, and axonal atrophy and demyelination were observed. After injection of bone marrow-derived MSCs (BM-MSCs) into hindlimb muscles, NCVs were restored to near-normal levels. Histological examination demonstrated that injected MSCs were preferentially and durably engrafted in the sciatic nerves, and a portion of the engrafted MSCs were distinctively localized close to vasa nervora of sciatic nerves. Furthermore, vasa nervora increased in density, and the ultrastructure of myelinated fibers in nerves was observed to be restored. Real-time RT-PCR experiments showed that gene expression of multiple factors involved in angiogenesis, neural function, and myelination were increased in the MSC-injected nerves. These findings suggest that MSC transplantation improved DN through direct peripheral nerve angiogenesis, neurotrophic effects, and restoration of myelination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。