Controlling placental spheroid growth and phenotype using engineered synthetic hydrogel matrices

使用工程合成水凝胶基质控制胎盘球体的生长和表型

阅读:16
作者:Emily M Slaby, Seema B Plaisier, Sarah R Brady, Shivani C Hiremath, Jessica D Weaver

Abstract

The human placenta is a complex organ comprised of multiple trophoblast subtypes, and inadequate models to study the human placenta in vitro limit the current understanding of human placental behavior and development. Common in vitro placental models rely on two-dimensional culture of cell lines and primary cells, which do not replicate the native tissue microenvironment, or poorly defined three-dimensional hydrogel matrices such as Matrigel™ that provide limited environmental control and suffer from high batch-to-batch variability. Here, we employ a highly defined, synthetic poly(ethylene glycol)-based hydrogel system with tunable degradability and presentation of extracellular matrix-derived adhesive ligands native to the placenta microenvironment to generate placental spheroids. We evaluate the capacity of a hydrogel library to support the viability, function, and phenotypic protein expression of three human trophoblast cell lines modeling varied trophoblast phenotypes and find that degradable synthetic hydrogels support the greatest degree of placental spheroid viability, proliferation, and function relative to standard Matrigel controls. Finally, we show that trophoblast culture conditions modulate cell functional phenotype as measured by proteomics analysis and functional secretion assays. Engineering precise control of placental spheroid development in vitro may provide an important new tool for the study of early placental behavior and development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。