AXL signaling in primary sensory neurons contributes to chronic compression of dorsal root ganglion-induced neuropathic pain in rats

初级感觉神经元中的 AXL 信号导致大鼠背根神经节诱发的神经性疼痛的慢性压迫

阅读:11
作者:Lingli Liang, Jun Zhang, Lixia Tian, Shuo Wang, Linping Xu, Yingxuan Wang, Qingying Guo-Shuai, Yue Dong, Yu Chen, Hong Jia, Xuewei Yang, Chunmei Yuan

Abstract

Low back pain is a chronic, highly prevalent, and hard-to-treat condition in the elderly. Clinical studies indicate that AXL, which belongs to the tyrosine kinase receptor subfamily, mediates pathological pain. However, it is not clear exactly how AXL regulates pain behaviors. In this study, we used a model of chronic compression of dorsal root ganglion-induced neuropathic pain to recreate clinical intervertebral foramen stenosis and related lumbocrural pain to explore whether AXL in primary sensory neurons contributes to this neuropathic pain in rats. Using double-labeling immunofluorescence, we observed that both phosphorylated AXL and AXL were localized primarily on isolectin B4-positive and calcitonin gene-related peptide-positive neurons, while AXL was also localized in neurofilament-200-positive neurons. Chronic compression of dorsal root ganglion-induced pain was associated with the upregulation of AXL mRNA and protein in injured dorsal root ganglia. Repeated intrathecal administration of the AXL inhibitor, TP0903, or the AXL small interfering RNA effectively alleviated chronic compression of dorsal root ganglion-induced pain hypersensitivities. Moreover, repeated intrathecal administration of either TP0903 or AXL small interfering RNA reduced the expression of mammalian target of rapamycin in injured dorsal root ganglia, suggesting that mammalian target of rapamycin may mediate AXL’s actions. These results indicate that the upregulation of dorsal root ganglion AXL may be part of a peripheral mechanism of neuropathic pain via an intracellular mammalian target of rapamycin-signaling pathway. Thus, while AXL inhibitors have so far primarily shown clinical efficacy in tumor treatment, AXL intervention could also serve as a potential target for the treatment of neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。