Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen

乙二醇在硒化镍上的选择性氧化生成甲酸盐并同时释放氢气

阅读:9
作者:Junshan Li, Luming Li, Xingyu Ma, Xu Han, Congcong Xing, Xueqiang Qi, Ren He, Jordi Arbiol, Huiyan Pan, Jun Zhao, Jie Deng, Yu Zhang, Yaoyue Yang, Andreu Cabot

Abstract

There is an urgent need for cost-effective strategies to produce hydrogen from renewable net-zero carbon sources using renewable energies. In this context, the electrochemical hydrogen evolution reaction can be boosted by replacing the oxygen evolution reaction with the oxidation of small organic molecules, such as ethylene glycol (EG). EG is a particularly interesting organic liquid with two hydroxyl groups that can be transformed into a variety of C1 and C2 chemicals, depending on the catalyst and reaction conditions. Here, a catalyst is demonstrated for the selective EG oxidation reaction (EGOR) to formate on nickel selenide. The catalyst nanoparticle (NP) morphology and crystallographic phase are tuned to maximize its performance. The optimized NiS electrocatalyst requires just 1.395 V to drive a current density of 50 mA cm-2 in 1 m potassium hydroxide (KOH) and 1 m EG. A combination of in situ electrochemical infrared absorption spectroscopy (IRAS) to monitor the electrocatalytic process and ex situ analysis of the electrolyte composition shows the main EGOR product is formate, with a Faradaic efficiency above 80%. Additionally, C2 chemicals such as glycolate and oxalate are detected and quantified as minor products. Density functional theory (DFT) calculations of the reaction process show the glycol-to-oxalate pathway to be favored via the glycolate formation, where the CC bond is broken and further electro-oxidized to formate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。