IkappaB kinase-dependent chronic activation of NF-kappaB is necessary for p21(WAF1/Cip1) inhibition of differentiation-induced apoptosis of monocytes

IκB 激酶依赖性 NF-κB 慢性激活是 p21(WAF1/Cip1)抑制分化诱导的单核细胞凋亡的必要条件

阅读:4
作者:K N Pennington, J A Taylor, G D Bren, C V Paya

Abstract

The molecular mechanisms regulating monocyte differentiation to macrophages remain unknown. Although the transcription factor NF-kappaB participates in multiple cell functions, its role in cell differentiation is ill defined. Since differentiated macrophages, in contrast to cycling monocytes, contain significant levels of NF-kappaB in the nuclei, we questioned whether this transcription factor is involved in macrophage differentiation. Phorbol 12-myristate 13-acetate (PMA)-induced differentiation of the promonocytic cell line U937 leads to persistent NF-kappaB nuclear translocation. We demonstrate here that an increased and persistent IKK activity correlates with monocyte differentiation leading to persistent NF-kappaB activation secondary to increased IkappaBalpha degradation via the IkappaB signal response domain (SRD). Promonocytic cells stably overexpressing an IkappaBalpha transgene containing SRD mutations fail to activate NF-kappaB and subsequently fail to survive the PMA-induced macrophage differentiation program. The differentiation-induced apoptosis was found to be dependent on tumor necrosis factor alpha. The protective effect of NF-kappaB is mediated through p21(WAF1/Cip1), since this protein was found to be regulated in an NF-kappaB-dependent manner and to confer survival features during macrophage differentiation. Therefore, NF-kappaB plays a key role in cell differentiation by conferring cell survival that in the case of macrophages is mediated through p21(WAF1/Cip1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。