Characterization of Human CD8(+)TCR(-) Facilitating Cells In Vitro and In Vivo in a NOD/SCID/IL2rγ(null) Mouse Model

NOD/SCID/IL2rγ(null) 小鼠模型中人 CD8(+)TCR(-) 促细胞体外和体内的表征

阅读:5
作者:Y Huang, M J Elliott, E S Yolcu, T O Miller, J Ratajczak, L D Bozulic, Y Wen, H Xu, M Z Ratajczak, S T Ildstad

Abstract

CD8(+)/TCR(-) facilitating cells (FCs) in mouse bone marrow (BM) significantly enhance engraftment of hematopoietic stem/progenitor cells (HSPCs). Human FC phenotype and mechanism of action remain to be defined. We report, for the first time, the phenotypic characterization of human FCs and correlation of phenotype with function. Approximately half of human FCs are CD8(+)/TCR(-)/CD56 negative (CD56(neg)); the remainder are CD8(+)/TCR(-)/CD56 bright (CD56(bright)). The CD56(neg) FC subpopulation significantly promotes homing of HSPCs to BM in nonobese diabetic/severe combined immunodeficiency/IL-2 receptor γ-chain knockout mouse recipients and enhances hematopoietic colony formation in vitro. The CD56(neg) FC subpopulation promotes rapid reconstitution of donor HSPCs without graft-versus-host disease (GVHD); recipients of CD56(bright) FCs plus HSPCs exhibit low donor chimerism early after transplantation, but the level of chimerism significantly increases with time. Recipients of HSPCs plus CD56(neg) or CD56(bright) FCs showed durable donor chimerism at significantly higher levels in BM. The majority of both FC subpopulations express CXCR4. Coculture of CD56(bright) FCs with HSPCs upregulates cathelicidin and β-defensin 2, factors that prime responsiveness of HSPCs to stromal cell-derived factor 1. Both FC subpopulations significantly upregulated mRNA expression of the HSPC growth factors and Flt3 ligand. These results indicate that human FCs exert a direct effect on HSPCs to enhance engraftment. Human FCs offer a potential regulatory cell-based therapy for enhancement of engraftment and prevention of GVHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。