MIR497HG-Derived miR-195 and miR-497 Mediate Tamoxifen Resistance via PI3K/AKT Signaling in Breast Cancer

MIR497HG 衍生的 miR-195 和 miR-497 通过 PI3K/AKT 信号传导介导乳腺癌中他莫昔芬耐药性

阅读:10
作者:Yao Tian, Zhao-Hui Chen, Peng Wu, Di Zhang, Yue Ma, Xiao-Feng Liu, Xin Wang, Dan Ding, Xu-Chen Cao, Yue Yu

Abstract

Tamoxifen is commonly used for the treatment of patients with estrogen receptor-positive (ER+) breast cancer, but the acquired resistance to tamoxifen presents a critical challenge of breast cancer therapeutics. Recently, long noncoding RNA MIR497HG and its embedded miR-497 and miR-195 are proved to play significant roles in many types of human cancers, but their roles in tamoxifen-resistant breast cancer remain unknown. The results indicate that MIR497HG deficiency induces breast cancer progression and tamoxifen resistance by inducing downregulation of miR-497/195. miR-497/195 coordinately represses five positive PI3K-AKT regulators (MAP2K1, AKT3, BCL2, RAF1, and CCND1), resulting in inhibition of PI3K-AKT signaling, and PI3K-AKT inhibition in tamoxifen-resistant cells restored tamoxifen responsiveness. Furthermore, ER α binds the MIR497HG promoter to activate its transcription in an estrogen-dependent manner. ZEB1 interacts with HDAC1/2 and DNMT3B at the MIR497HG promoter, resulting in promoter hypermethylation and histone deacetylation. The findings reveal that ZEB1-induced MIR497HG depletion contributes to breast cancer progression and tamoxifen resistance through PI3K-AKT signaling. MIR497HG can be used as a biomarker for predicting tamoxifen sensitivity in patients with ER+ breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。