Abstract
Glioblastoma (GBM) is the most aggressive intracranial malignancy with poor prognosis. Enhanced angiogenesis is an essential hallmark of GBM, which demonstrates extensive microvascular proliferation and abnormal vasculature. Here, we uncovered the key role of myosin 1b in angiogenesis and vascular abnormality in GBM. Myosin 1b is upregulated in GBM endothelial cells (ECs) compared to the paired nonmalignant brain tissue. In our study, we found that myosin 1b promotes migration, proliferation, and angiogenesis of human/mouse brain ECs. We also found that myosin 1b expression in ECs can be regulated by vascular endothelial growth factor (VEGF) signaling through myc. Moreover, myosin 1b promotes angiogenesis via Piezo1 by enhancing Ca2+ influx, in which process VEGF can be the trigger. In conclusion, our results identified myosin 1b as a key mediator in promoting angiogenesis via mechanosensitive ion channel component 1 (Piezo1) and suggested that VEGF/myc signaling pathway could be responsible for driving the changes of myosin 1b overexpression in GBM ECs.
