Mutation in Prkra results in cerebellar abnormality and reduced eIF2α phosphorylation in a model of DYT-PRKRA

Prkra 突变导致 DYT-PRKRA 模型中的小脑异常和 eIF2α 磷酸化降低

阅读:5
作者:Samuel B Burnett, Allison M Culver, Tricia A Simon, Taylor Rowson, Kenneth Frederick, Kristina Palmer, Stephen A Murray, Shannon W Davis, Rekha C Patel

Abstract

Variants in the PRKRA gene, which encodes PACT, cause the early-onset primary dystonia DYT-PRKRA, a movement disorder associated with disruption of coordinated muscle movements. PACT and its murine homolog RAX activate protein kinase R (PKR; also known as EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkralear-5J, exhibit progressive dystonia. In the present study, we investigated the biochemical and developmental consequences of the Prkralear-5J mutation. Our results indicated that the truncated PACT/RAX protein retains its ability to interact with PKR but inhibits PKR activation. Mice homozygous for the mutation showed abnormalities in cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation was noted in the cerebellum and Purkinje neurons of the homozygous Prkralear-5J mice. These findings indicate that PACT/RAX-mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from the Prkralear-5J mutation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。