Conclusions
The combination strategy of subcellular separation and proteome profiling allows an in-depth and refined investigation into the composition and functions of cytosolic proteome, which may shed light on the monocyte-mediated pathogenic mechanisms of osteoporosis.
Methods
Here, we conducted a comparative proteomics analysis in PBMs from Caucasian male subjects with discordant hip BMD (29 low BMD vs. 30 high BMD). To decrease the proteome complexity and expand the coverage range of the cellular proteome, we separated the PBM proteome into several subcellular compartments and focused on the cytosolic fractions, which are involved in a wide range of fundamental biochemical processes.
Results
Of the total of 3796 detected cytosolic proteins, we identified 16 significant (P < 0.05) and an additional 22 suggestive (P < 0.1) DEPs between samples with low vs. high hip BMDs. Some of the genes for DEPs, including ALDOA, MYH14, and Rap1B, showed an association with BMD in multiple omics studies (proteomic, transcriptomic, and genomic). Further bioinformatics analysis revealed the enrichment of DEPs in functional terms for monocyte proliferation, differentiation, and migration. Conclusions: The combination strategy of subcellular separation and proteome profiling allows an in-depth and refined investigation into the composition and functions of cytosolic proteome, which may shed light on the monocyte-mediated pathogenic mechanisms of osteoporosis.
