Significance
Key features of Parkinson's disease are the degeneration of dopaminergic neurons in the substantia nigra pars compacta, an associated loss of the brain pigment neuromelanin and a resulting impairment of the neuronal network. The accumulation of iron binding neuromelanin granules is age- and disease-dependent and disease specific alterations could affect the neuronal iron homeostasis leading to oxidative stress induced cell death. The focus of the described method is the analysis of neuromelanin granules as well as axonal cell-endings of nerve cells (synaptosomes) of individual donors (control and diseased). It is the basis for the identification of disease-relevant changes in the iron homeostasis and the generation of new insight into altered protein compositions or regulations which might lead to disturbed communications between nerve cells resulting in pathogenic processes.
