Discussion
Together, aged serum supplementation caused cellular and transcriptomic changes in human myogenic progenitors. The current data from our in vitro model possibly simulate non-cell autonomous contributions of blood composition to age-related processes in human skeletal muscle.
Methods
Myogenic progenitors from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were supplemented with serum samples from aged or young Fischer 344 × Brown Norway F1-hybrid rats. The effect of aged or young serum supplementation on myogenic progenitor proliferation, myotube formation capacity, differentiation, and early transcriptomic profiles were analyzed.
Results
We found that aged rat serum supplementation significantly reduced cell proliferation and increased cell death in both ESC- and iPSC-derived myogenic progenitors. Next, we found that the supplementation of aged rat serum inhibited myotube formation and maturation during terminal differentiation from progenitors to skeletal myocytes when compared to the cells treated with young adult rat serum. Lastly, we identified that gene expression profiles were affected following serum supplementation in culture.
