Extracellular glucose triggers metabolic reprogramming of cultured human bronchial epithelial cells and indirect fibroblast activation

细胞外葡萄糖触发培养的人支气管上皮细胞的代谢重编程和间接成纤维细胞活化

阅读:15
作者:Sangmi S Park, Rafael Ward, Patrick Geraghty, Itsaso Garcia-Arcos

Abstract

Glucose is essential for energy metabolism, and its usage can determine other cellular functions, depending on the cell type. In some pathological conditions, cells are exposed to high concentrations of glucose for extended periods. In this study, we investigated metabolic, oxidative stress, and cellular senescence pathways in human bronchial epithelial cells (HBECs) cultured in media with physiologically low (5 mm) and high (12.5 mm) glucose concentrations. HBECs exposed to 12.5 mm glucose showed increased glucose routing toward the pentose phosphate pathway, lactate synthesis, and glycogen, but not triglyceride synthesis. These metabolic shifts were not associated with changes in cell proliferation rates, oxidative stress, or cellular senescence pathways. Since hyperglycemia is associated with fibrosis in the lung, we asked whether HBECS could activate fibroblasts. Primary human lung fibroblasts cultured in media conditioned by 12.5 mm glucose-exposed HBECs showed a 1.3-fold increase in the gene expression of COL1A1 and COL1A2, along with twofold increased protein levels of smooth muscle cell actin and 2.4-fold of COL1A1. Consistently, HBECs cultured with 12.5 mm glucose secreted proteins associated with inflammation and fibrosis, such as interleukins IL-1β, IL-10, and IL-13, CC chemokine ligands CCL2 and CCL24, and with extracellular matrix remodeling, such as metalloproteinases (MMP)-1, MMP-3, MMP-9, and MMP-13 and tissue inhibitors of MMPs (TIMP)-1 and -2. This study shows that HBECs undergo metabolic reprogramming and increase the secretion of profibrotic mediators following exposure to high concentrations of glucose, and it contributes to the understanding of the metabolic crosstalk of neighboring cells in diabetes-associated pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。