Proteomic and microRNA Transcriptome Analysis revealed the microRNA-SmyD1 network regulation in Skeletal Muscle Fibers performance of Chinese perch

蛋白质组学和microRNA转录组分析揭示了microRNA-SmyD1网络调控鲈鱼骨骼肌纤维性能

阅读:8
作者:WuYing Chu, FangLiang Zhang, Rui Song, YuLong Li, Ping Wu, Lin Chen, Jia Cheng, ShaoJun Du, JianShe Zhang

Abstract

Fish myotomes are comprised of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. Although the expression profile properties in fast and slow muscle fibers had been investigated at the mRNA levels, a comprehensive analysis at proteomic and microRNA transcriptomic levels is limited. In the present study, we first systematically compared the proteomic and microRNA transcriptome of the slow and fast muscles of Chinese perch (Siniperca chuatsi). Total of 2102 proteins were identified in muscle tissues. Among them, 99 proteins were differentially up-regulated and 400 were down-regulated in the fast muscle compared with slow muscle. MiRNA microarrays revealed that 199 miRNAs identified in the two types of muscle fibers. Compared with the fast muscle, the 32 miRNAs was up-regulated and 27 down-regulated in the slow muscle. Specifically, expression of miR-103 and miR-144 was negatively correlated with SmyD1a and SmyD1b expression in fast and slow muscles, respectively. The luciferase reporter assay further verified that the miR-103 and miR-144 directly regulated the SmyD1a and SmyD1b expression by targeting their 3'-UTR. The constructed miRNA-SmyD1 interaction network might play an important role in controlling the development and performance of different muscle fiber types in Chinese perch.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。