Effect of thiourethane filler surface functionalization on stress, conversion and mechanical properties of restorative dental composites

硫代氨基甲酸酯填料表面功能化对牙科修复复合材料应力、转化和机械性能的影响

阅读:5
作者:André L Faria-E-Silva, Andressa Dos Santos, Angela Tang, Emerson M Girotto, Carmem S Pfeifer

Methods

The TU-silane agent was synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene and 3-(triethoxysilyl)propyl isocyanate with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiol and alkoxy silane groups. Barium glass fillers (1μm average particle size) were functionalized with 5wt% TU-silane in an acidic ethanol solution. Commercially available 3-(trimethoxysilyl)propyl methacrylate (MA-silane) and (3-mercaptopropyl)trimethoxysilane (SH-silane), as well as no silane treatment (NO-silane), were used as controls. Composites were made with BisGMA-UDMA-TEGDMA (5:3:2), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8wt%) and di-tert-butyl hydroxytoluene (0.3wt%) and 70wt% silanated inorganic fillers. Polymerization stress (PS) was measured using a cantilever beam apparatus (Bioman). Methacrylate conversion (DC) and rate of polymerization (RP) during photoactivation (800mW/cm2) were followed in real-time with near-IR. Flexural strength/modulus (FS/FM) were evaluated in three-point bending with 2×2×25 mm. Statistical analysis: 2-way ANOVA/Tukey's test (α=5%).

Results

DC, Rpmax and E were similar for all groups tested. FS was similar for the TU- and MA-silane, which were statistically higher than the untreated and SH-silane groups. Stress reductions in relation to the MA-silane were observed for all groups, but statistically more markedly for the TU-silane material. This is likely due to stress relaxation and/or toughening provided at the filler interface by the oligomeric TU structure. Significance: TU-silane oligomers favorably modified conventional dimethacrylate networks with minimal disruption to existing curing chemistry, in filled composites. For the same conversion values, stress reductions of up to 50% were observed, without compromise to mechanical properties or handling characteristics.

Significance

TU-silane oligomers favorably modified conventional dimethacrylate networks with minimal disruption to existing curing chemistry, in filled composites. For the same conversion values, stress reductions of up to 50% were observed, without compromise to mechanical properties or handling characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。