Treatment of colitis by oral negatively charged nanostructured curcumin in rats

口服带负电荷纳米结构姜黄素治疗大鼠结肠炎

阅读:5
作者:Lívia Medeiros Soares Celani, Eryvaldo Sócrates Tabosa Egito, Ítalo Medeiros Azevedo, Cláudia Nunes Oliveira, Douglas Dourado, Aldo Cunha Medeiros

Conclusions

The nanostructured microemulsion of curcumin, used orally, positively influenced the results of the treatment of UC in rats. The data also suggests that nanostructured curcumin with negative zeta potential is a promising phytopharmaceutical oral delivery system for UC therapy. Further research needs to be done to better understand the mechanisms of the negatively charged nanostructured curcumin microemulsion in UC therapy.

Methods

Four percent acetic acid was used to induce UC. The animals were treated for seven days and randomly assigned to four groups: normal control (NC), colitis/normal saline (COL/NS), colitis/curcumin (COL/CUR), and colitis/mesalazine (COL/MES). The nanostructured curcumin was formulated with a negative zeta potential (-16.70 ± 1.66 mV). Dosage of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-β (IL-1β), interleukin 6 (IL-6), and antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase), macro and microscopic evaluation of the colon tissue were analyzed.

Purpose

To examine the effects of a negatively charged nanostructured curcumin microemulsion in experimental ulcerative colitis (UC) in rats.

Results

The COL/CUR group had a higher level of antioxidant enzymes compared to the COL/MESgroup. The levels of TNF-α, IL-1β and IL-6 were significantly lower in the colonic tissue of the COL/CUR group rats, when compared to the COL/NS and COL/MES groups (p < 0.001). The presence of ulcers in the colonic mucosa in rats of the COL/NSgroup was significantly higher than in the COL/MES group (p < 0.001). In the NC and COL/CUR groups, there were no ulcers in the colonic mucosa. Conclusions: The nanostructured microemulsion of curcumin, used orally, positively influenced the results of the treatment of UC in rats. The data also suggests that nanostructured curcumin with negative zeta potential is a promising phytopharmaceutical oral delivery system for UC therapy. Further research needs to be done to better understand the mechanisms of the negatively charged nanostructured curcumin microemulsion in UC therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。