Amino acid analysis for peptide quantitation using reversed-phase liquid chromatography combined with multiple reaction monitoring mass spectrometry

采用反相液相色谱结合多反应监测质谱法进行肽定量氨基酸分析

阅读:4
作者:Deema O Qasrawi, Evgeniy V Petrotchenko, Christoph H Borchers

Abstract

Amino acid analysis (AAA) can be used for absolute quantitation of standard peptides after acid hydrolysis using 6 M HCl. Obtained individual amino acids can then be quantified by liquid chromatography-mass spectrometry (LC-MS). Achieving baseline separation of non-derivatized amino acids is challenging when reversed-phase (RP) chromatography is used. Several derivatization methods are commonly utilized to address this issue; however, derivatization has several drawbacks, such as derivative instability and lack of reproducibility. Currently, separation of non-derivatized amino acids is typically done using HILIC, but HILIC has problems of poor reproducibility and long column equilibration times. We developed a method to quantify non-derivatized amino acids, including methionine and cysteine, from peptide hydrolysates by RP-LC-MS without special pre-treatment of the samples. Samples were spiked with certified isotopically labeled (13C- and/or 15N-) amino acids as internal standards. The amino acids released from acid hydrolysis were then analyzed by RP-UPLC-MRM-MS and quantified using the analyte/internal standard chromatographic peak area ratios. Peptide quantitation was based on the sum of the individual amino acid concentrations from the known peptide sequences. The resulting method did not require derivatization, used standard C18-based reversed-phase liquid chromatography, did not require external calibration, was robust, and was able to quantify all 17 amino acids for which we had internal standards, including the sulfur-containing amino acids, cysteine and methionine, in their respective oxidized forms. This simple and robust method enabled the absolute quantitation of standard peptides using only acid hydrolysis and a standard RP-UPLC-MRM-MS setup.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。