Effects and molecular mechanisms of Achyranthes bidentata polypeptide k on proliferation of Schwann cells

牛膝多肽k对雪旺细胞增殖的影响及分子机制

阅读:5
作者:Leili Tang #, Min Zhang #, Xingyu Liu, Ye Zhu, Xin Chen, Jingfei Zhong, Meiyuan Li

Background

Achyranthes bidentata polypeptide k (ABPPk) is an active ingredient separated from the Achyranthes bidentata polypeptides (ABPP) in traditional Chinese medicine. In the present study, we investigated the promoting effects and molecular mechanisms of ABPPk on the proliferation of Schwann cells (SCs).

Conclusions

Through in vitro and in vivo studies, we identified the promoting effects of ABPPk on the proliferation of SCs. Using high-throughput sequencing technology, our work more comprehensively revealed the characteristics and mechanism of ABPPk on SCs. These results further enrich an understanding of the positive function and molecular mechanism of ABPPk in peripheral nerve regeneration and are conducive to the discovery of new therapeutic targets for peripheral nerve regeneration.

Methods

Primary SCs were cultured with ABPPk or nerve growth factor (NGF) in vitro, and cell viability, cell cycle, EdU assay, and the expressions of proliferating cell nuclear antigen (PCNA) and Ki67 were analyzed. In addition, RNA-seq was used for bioinformatics analysis at different time points. PCNA was detected at different time points in a rat sciatic nerve injury model to further determining the role of ABPPk in sciatic nerve injury repair.

Results

We found that ABPPk could effectively promote the proliferation of SCs, while ABPPk and NGF had different molecular mechanisms for their proliferation at different time points. Weighted gene co-expression network analysis (WGCNA) showed that ABPPk was mainly involved in the positive regulation of cell proliferation and epigenetic regulation of cell proliferation, while the main cell proliferation-related modules that NGF participated in were attenuation of negative regulation of cell proliferation and positive regulation of cell cycle. There were significant differences in the genes involved in different modules between the two groups, and ABPPk differed from NGF in the biological process of SC migration, differentiation, movement, and development in terms of action time and key genes. Functional enrichment analysis revealed ABPPk had more advantages and participation in the axon extension and vascular system areas. Furthermore, ABPPk significantly promoted the proliferation of SCs in vivo. Conclusions: Through in vitro and in vivo studies, we identified the promoting effects of ABPPk on the proliferation of SCs. Using high-throughput sequencing technology, our work more comprehensively revealed the characteristics and mechanism of ABPPk on SCs. These results further enrich an understanding of the positive function and molecular mechanism of ABPPk in peripheral nerve regeneration and are conducive to the discovery of new therapeutic targets for peripheral nerve regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。