Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation

促红细胞生成素诱导的磷脂酰肌醇 3-激酶/Akt 使红细胞分化因子 GATA-1 能够进行 TIMP-1 基因转录激活

阅读:7
作者:Zahra Kadri, Leila Maouche-Chretien, Heather M Rooke, Stuart H Orkin, Paul-Henri Romeo, Patrick Mayeux, Philippe Leboulch, Stany Chretien

Abstract

The contribution of erythropoietin to the differentiation of the red blood cell lineage remains elusive, and the demonstration of a molecular link between erythropoietin and the transcription of genes associated with erythroid differentiation is lacking. In erythroid cells, expression of the tissue inhibitor of matrix metalloproteinase (TIMP-1) is strictly dependent on erythropoietin. We report here that erythropoietin regulates the transcription of the TIMP-1 gene upon binding to its receptor in erythroid cells by triggering the activation of phosphatidylinositol 3-kinase (PI3K)/Akt. We found that Akt directly phosphorylates the transcription factor GATA-1 at serine 310 and that this site-specific phosphorylation is required for the transcriptional activation of the TIMP-1 promoter. This chain of events can be recapitulated in nonerythroid cells by transfection of the implicated molecular partners, resulting in the expression of the normally silent endogenous TIMP-1 gene. Conversely, TIMP-1 secretion is profoundly decreased in erythroid cells from fetal livers of transgenic knock-in mice homozygous for a GATA(S310A) gene, which encodes a GATA-1 mutant that cannot be phosphorylated at Ser(310). Furthermore, retrovirus-mediated expression of GATA(S310A) into GATA-1(null)-derived embryonic stem cells decreases the rate of hemoglobinization by more than 50% compared to expressed wild-type GATA-1. These findings provide the first example of a chain of coupling mechanisms between the binding of erythropoietin to its receptor and GATA-1-dependent gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。