Female mice lacking GluA3 show early onset of hearing loss, cochlear synaptopathy, and afferent terminal swellings in ambient sound levels

缺乏 GluA3 的雌性小鼠在环境噪音水平下会早期出现听力损失、耳蜗突触病变和传入神经末梢肿胀

阅读:16
作者:Indra Pal, Atri Bhattacharyya, Babak V-Ghaffari, Essence Devine Williams, Maolei Xiao, Mark Allen Rutherford, María Eulalia Rubio

Abstract

AMPA-type glutamate receptors (AMPARs) mediate excitatory cochlear transmission. However, unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3 KO ) in male mice reduced cochlear output by 8 postnatal weeks. Here, we studied the role of X-linked Gria3 in cochlear function and synapse anatomy in females. Auditory brainstem responses (ABRs) were similar in 3-week-old female Gria3 WT and Gria3 KO mice raised in quiet. However, after switching to ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-week and older in Gria3 KO . A quiet vivarium precluded this effect. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were more frequent, and swollen afferent terminals were observed only in female Gria3 KO mice in ambient sound. Synaptic GluA4:GluA2 ratios increased relative to Gria3 WT , particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3 KO . We propose that lack of GluA3 induces a sex-dependent vulnerability to AMPAR-mediated excitotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。