Discovery of SARS-CoV-2 Nsp14 and Nsp16 Methyltransferase Inhibitors by High-Throughput Virtual Screening

通过高通量虚拟筛选发现 SARS-CoV-2 Nsp14 和 Nsp16 甲基转移酶抑制剂

阅读:3
作者:Raitis Bobrovs, Iveta Kanepe, Nauris Narvaiss, Liene Patetko, Gints Kalnins, Mihails Sisovs, Anna L Bula, Solveiga Grinberga, Martins Boroduskis, Anna Ramata-Stunda, Nils Rostoks, Aigars Jirgensons, Kaspars Tars, Kristaps Jaudzems

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses mRNA capping to evade the human immune system. The cap formation is performed by the SARS-CoV-2 mRNA cap methyltransferases (MTases) nsp14 and nsp16, which are emerging targets for the development of broad-spectrum antiviral agents. Here, we report results from high-throughput virtual screening against these two enzymes. The docking of seven million commercially available drug-like compounds and S-adenosylmethionine (SAM) co-substrate analogues against both MTases resulted in 80 virtual screening hits (39 against nsp14 and 41 against nsp16), which were purchased and tested using an enzymatic homogeneous time-resolved fluorescent energy transfer (HTRF) assay. Nine compounds showed micromolar inhibition activity (IC50 < 200 μM). The selectivity of the identified inhibitors was evaluated by cross-checking their activity against human glycine N-methyltransferase. The majority of the compounds showed poor selectivity for a specific MTase, no cytotoxic effects, and rather poor cell permeability. Nevertheless, the identified compounds represent good starting points that have the potential to be developed into efficient viral MTase inhibitors.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。