Theoretical prediction and shape-controlled synthesis of two-dimensional semiconductive Ni3TeO6

二维半导体Ni3TeO6的理论预测与形状控制合成

阅读:6
作者:Javier Fernández-Catalá #, Andrey A Kistanov #, Yang Bai, Harishchandra Singh, Wei Cao

Abstract

Current progress in two-dimensional (2D) materials explorations leads to constant specie enrichments of possible advanced materials down to two dimensions. The metal chalcogenide-based 2D materials are promising grounds where many adjacent territories are waiting to be explored. Here, a stable monolayer Ni3TeO6 (NTO) structure was computationally predicted and its stacked 2D nanosheets experimentally synthesized. Theoretical design undergoes featuring coordination of metalloid chalcogen, slicing the bulk structure, geometrical optimizations and stability study. The predicted layered NTO structure is realized in nanometer-thick nanosheets via a one-pot shape-controlled hydrothermal synthesis. Compared to the bulk, the 2D NTO own a lowered bandgap energy, more sensitive wavelength selectivity and an emerging photocatalytic hydrogen evolution ability under visible light. Beside a new 2D NTO with the optoelectrical and photocatalytic merits, its existing polar space group, structural specification, and design route are hoped to benefit 2D semiconductor innovations both in species enrichment and future applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。