A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia

额颞叶痴呆症家族中的致病性前颗粒蛋白突变和 C9orf72 重复扩增

阅读:19
作者:Tammaryn Lashley, Jonathan D Rohrer, Colin Mahoney, Elizabeth Gordon, Jon Beck, Simon Mead, Jason Warren, Martin Rossor, Tamas Revesz

Aims

Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease and is the second most common form of young onset dementia after Alzheimer's disease (AD). An autosomal dominant pattern of inheritance is present in around 25-50% of FTLD cases indicating a strong genetic component. Major pathogenic mutations of FTLD have been demonstrated independently in the progranulin (GRN) gene and the C9orf72 hexanucleotide expansion repeat. In this study we present a family that have been identified as carrying both a GRN Cys31fs mutation and the C9orf72 hexanucleotide expansion repeat.

Conclusions

The type and distribution of the pathological lesions in these two cases were in keeping with FTLD cases carrying only the C9orf72 hexanucleotide repeat. However the driving force of the pathological process may be either pathogenic mutation or a combination of both converging on a singular mechanism.

Methods

In the present study we describe the clinical and genetic details of family members and pathological features of two family members that have come to post-mortem.

Results

The mean age at disease onset was 57 years (48-61 years) and mean duration 4 years (2-7 years). The most common presenting syndrome was behavioural variant frontotemporal dementia. Brain imaging from available cases showed a symmetrical pattern of atrophy particularly affecting the frontal and temporal lobes. Pathologically two cases were classified as FTLD-TDP type A with TDP-43 positive inclusions, with additional p62-positive 'star-like' inclusions found in the hippocampal formation and cerebellum. Conclusions: The type and distribution of the pathological lesions in these two cases were in keeping with FTLD cases carrying only the C9orf72 hexanucleotide repeat. However the driving force of the pathological process may be either pathogenic mutation or a combination of both converging on a singular mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。