Discovery of multipotent progenitor cells from human induced membrane: Equivalent to periosteum-derived stem cells in bone regeneration

来自人类诱导膜的多能祖细胞的发现:相当于骨再生中的骨膜来源的干细胞

阅读:5
作者:Hongri Wu, Jiulin Tan, Dong Sun, Xiaohua Wang, Jie Shen, Shulin Wang, Qijie Dai, Zhiyuan Wei, Gang Li, Sien Lin, Fei Luo, Zhao Xie

Background

The periosteum stem cells (PSCs) plays a critical role in bone regeneration and defect reconstruction. Insertion of polymethyl methacrylate (PMMA) bone cement can form an induced membrane(IM) and showed promising strategy for bone defect reconstruction, the underlying mechanism remains unclear. Our study sought to determine whether IM-derived cells(IMDCs) versus PSCs have similar characteristics in bone regeneration.

Conclusion

Our data demonstrated IM containing multipotent progenitor cells similar to that periosteum promoting bone regeneration, and indicated the existence of multiple subsets in osteogenic differentiation. Overall, the study provided a cellular and molecular insights in understanding the successful or failed outcome of bone defect healing.The translational potential of this article: This study confirmed IMDCs and PSCs share similar regeneration capacity and inform a translation potential of that cellular therapy applying IMDCs in bone defect repair.

Methods

IM and periosteum were harvested from ten bone defect patients treated with PMMA, the IMDCs and PSCs were isolated respectively. Morphological, functional and molecular evaluation was performed and matched for comparison.

Results

Both progenitor-like IMDCs and PSCs were successfully isolated. In vitro, we found IMDCs were similar to PSCs in morphology, colony forming capacity and expression of surface marker(CD90+, CD73+, CD105+, CD34-/CD45-). Meanwhile, these IMSCs displayed multipotency with chondrogenic, adipogenic and osteogenic differentiation, but differed in some IMSCs(3/10) population showing relatively poor osteogenic differentiation. The molecular profiles suggests that cell cycle and DNA replication signaling pathways were associated with these varying osteogenic potential. In vivo, we established a cell-based tissue-engineered bone by seeding IMDSs/PSCs to demineralized bone matrix (DBM) scaffold and demonstrated both IMDSs and PSCs enhanced bone regeneration in SCID mice bone defect model compared with DBM alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。