Reduced Krüppel-like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy

Krüppel样因子2表达降低可能加重糖尿病肾病内皮损伤

阅读:5
作者:Fang Zhong, Habing Chen, Chengguo Wei, Weijia Zhang, Zhengzhe Li, Mukesh K Jain, Peter Y Chuang, Hongyu Chen, Yongjun Wang, Sandeep K Mallipattu, John C He

Abstract

Krüppel-like factor 2 (KLF2), a shear stress-inducible transcription factor, has endoprotective effects. In streptozotocin-induced diabetic rats, we found that glomerular Klf2 expression was reduced in comparison with nondiabetic rats. However, normalization of hyperglycemia by insulin treatment increased Klf2 expression to a level higher than that of nondiabetic rats. Consistent with this, we found that Klf2 expression was suppressed by high glucose but increased by insulin in cultured endothelial cells. To determine the role of KLF2 in streptozotocin-induced diabetic nephropathy, we used endothelial cell-specific Klf2 heterozygous knockout mice and found that diabetic knockout mice developed more kidney/glomerular hypertrophy and proteinuria than diabetic wild-type mice. Glomerular expression of Vegfa, Flk1, and angiopoietin 2 increased, but expression of Flt1, Tie2, and angiopoietin 1 decreased, in diabetic knockout mice compared with diabetic wild-type mice. Glomerular expression of ZO-1, glycocalyx, and eNOS was also decreased in diabetic knockout compared with diabetic wild-type mice. These data suggest knockdown of Klf2 expression in the endothelial cells induced more endothelial cell injury. Interestingly, podocyte injury was also more prominent in diabetic knockout compared with diabetic wild-type mice, indicating a cross talk between these two cell types. Thus, KLF2 may play a role in glomerular endothelial cell injury in early diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。