Conclusion
The results demonstrate that d-ROMs and the A/G ratio could be used as sensitive markers for heat stress under field conditions.
Material and methods
Pigs were allocated to summer- and winter-finishing cohorts, 12 each. The evaluations included assessment of carcass traits and internal organs' normality carried out at the time of slaughter, and measurement of biomarkers in whole blood: derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential as markers of oxidative stress, and serum amyloid A and albumin/globulin (A/G) ratio as markers of acute and chronic inflammation, respectively.
Methods
Pigs were allocated to summer- and winter-finishing cohorts, 12 each. The evaluations included assessment of carcass traits and internal organs' normality carried out at the time of slaughter, and measurement of biomarkers in whole blood: derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential as markers of oxidative stress, and serum amyloid A and albumin/globulin (A/G) ratio as markers of acute and chronic inflammation, respectively.
Results
The summer-finished pigs reared under subtropical field conditions showed lower carcass quality than the winter-finished pigs, indicating a potential adverse effect of summer temperatures on the swine industry. Marginal changes were observed in d-ROMs and the A/G ratio between the summer- and winter-finishing cohorts.
