Skeletal consequences of deletion of steroid receptor coactivator-2/transcription intermediary factor-2

类固醇受体辅激活因子-2/转录中介因子-2 缺失对骨骼的影响

阅读:11
作者:Ulrike I Mödder, David G Monroe, Daniel G Fraser, Thomas C Spelsberg, Clifford J Rosen, Martine Géhin, Pierre Chambon, Bert W O'Malley, Sundeep Khosla

Abstract

Both estrogen receptor (ER) and peroxisome proliferator-activated receptor gamma (PPARgamma) regulate bone metabolism, and because steroid receptor coactivator (SRC)-2 (TIF-2) enhances ER and PPARgamma activity, we examined the consequences of deletion of SRC-2 on bone using SRC-2 knock out (KO) mice. Loss of SRC-2 resulted in increased bone mass, with SRC-2 KO mice having 80% higher trabecular bone volume as compared with wild type mice. SRC-2 KO mice also had a marked decrease (by 50%) in bone marrow adipocytes. These data suggested that marrow precursor cells in the SRC-2 KO mice may be resistant to the inhibitory effects of endogenous PPARgamma ligands on bone formation. Consistent with this, compared with cultures from wild type mice, marrow stromal cultures from SRC-2 KO mice formed significantly more mineralized nodules (by 3-fold) in the presence of the PPARgamma agonist, rosiglitazone. Using chromatin immunoprecipitation analysis, we demonstrated that in bone marrow stromal cells, loss of SRC-2 leads to destabilization of the transcription complex at the peroxisome proliferator response elements of a number of PPARgamma target genes, resulting in an overall decrease in the expression of adipocyte-related genes and a marked decrease in adipocyte development. Using ovariectomy with or without estrogen replacement, we also demonstrated that SRC-2 KO mice were partially resistant to the skeletal actions of estrogen. Collectively, these findings indicate that loss of SRC-2 leads to partial skeletal resistance to the ER and PPARgamma, but resistance to PPARgamma is dominant, leading to increased bone mass. Modulating SRC-2 action may, thus, represent a novel therapeutic target for osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。