His-311 and Arg-559 are key residues involved in fatty acid oxygenation in pathogen-inducible oxygenase

His-311 和 Arg-559 是参与病原体诱导加氧酶中脂肪酸氧合的关键残基

阅读:9
作者:Mary Koszelak-Rosenblum, Adam C Krol, Danielle M Simmons, Christopher C Goulah, Liliana Wroblewski, Michael G Malkowski

Abstract

Pathogen-inducible oxygenase (PIOX) oxygenates fatty acids into 2R-hydroperoxides. PIOX belongs to the fatty acid alpha-dioxygenase family, which exhibits homology to cyclooxygenase enzymes (COX-1 and COX-2). Although these enzymes share common catalytic features, including the use of a tyrosine radical during catalysis, little is known about other residues involved in the dioxygenase reaction of PIOX. We generated a model of linoleic acid (LA) bound to PIOX based on computational sequence alignment and secondary structure predictions with COX-1 and experimental observations that governed the placement of carbon-2 of LA below the catalytic Tyr-379. Examination of the model identified His-311, Arg-558, and Arg-559 as potential molecular determinants of the dioxygenase reaction. Substitutions at His-311 and Arg-559 resulted in mutant constructs that retained virtually no oxygenase activity, whereas substitutions of Arg-558 caused only moderate decreases in activity. Arg-559 mutant constructs exhibited increases of greater than 140-fold in Km, whereas no substantial change in Km was observed for His-311 or Arg-558 mutant constructs. Thermal shift assays used to measure ligand binding affinity show that the binding of LA is significantly reduced in a Y379F/R559A mutant construct compared with that observed for Y379F/R558A construct. Although Oryza sativa PIOX exhibited oxygenase activity against a variety of 14-20-carbon fatty acids, the enzyme did not oxygenate substrates containing modifications at the carboxylate, carbon-1, or carbon-2. Taken together, these data suggest that Arg-559 is required for high affinity binding of substrates to PIOX, whereas His-311 is involved in optimally aligning carbon-2 below Tyr-379 for catalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。