Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells

糖皮质激素对造血和非造血细胞中PTX3的细胞特异性调节

阅读:8
作者:Andrea Doni, Giovanna Mantovani, Chiara Porta, Jan Tuckermann, Holger M Reichardt, Anna Kleiman, Marina Sironi, Luca Rubino, Fabio Pasqualini, Manuela Nebuloni, Stefano Signorini, Giuseppe Peri, Antonio Sica, Paolo Beck-Peccoz, Barbara Bottazzi, Alberto Mantovani

Abstract

PTX3 (prototypic long pentraxin 3) is a fluid phase pattern recognition receptor, which plays nonredundant roles in the resistance against diverse pathogens, in the assembly of a hyaluronic acid-rich extracellular matrix, and in female fertility. Inflammatory signals induce production of PTX3 in diverse cell types, including myeloid dendritic cells (DC), fibroblasts, and endothelial cells (EC). The present study was designed to explore the effect of glucocorticoid hormones (GC) on PTX3 production in different cellular contexts. In myeloid DC, GC inhibited the PTX3 production. In contrast, in fibroblasts and EC, GC alone induced and, under inflammatory conditions, enhanced and extended PTX3 production. In vivo administration of GC augmented the blood levels of PTX3 in mice and humans. Moreover, patients with Cushing syndrome had increased levels of circulating PTX3, whereas PTX3 levels were decreased in subjects affected by iatrogenic hypocortisolism. In nonhematopoietic cells, GC receptor (GR) functioned as a ligand-dependent transcription factor (dimerization-dependent) to induce PTX3 gene expression. In contrast, in hematopoietic cells, GR repressed PTX3 gene transcription by interfering (dimerization-independent) with the action of other signaling pathways, probably NFkappaB and AP-1. Thus, divergent effects of GC were found to be due to different GR mechanisms. The results presented here indicate that GC have divergent effects on PTX3 production in hematopoietic (DC and macrophages) and nonhematopoietic (fibroblasts and EC) cells. The divergent effects of GC on PTX3 production probably reflect the different functions of this multifunctional molecule in innate immunity and in the construction of the extracellular matrix.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。