CBX1 is involved in hepatocellular carcinoma progression and resistance to sorafenib and lenvatinib via IGF-1R/AKT/SNAIL signaling pathway

CBX1 通过 IGF-1R/AKT/SNAIL 信号通路参与肝细胞癌进展以及对索拉非尼和仑伐替尼的耐药性

阅读:6
作者:Su-Su Zheng #, Jing-Fang Wu #, Wei-Xun Wu, Jin-Wu Hu #, Dai Zhang, Cheng Huang, Bo-Heng Zhang

Background

Chromobox Homolog 1 (CBX1) plays a crucial role in the pathogenesis of numerous diseases, including the evolution and advancement of diverse cancers. The role of CBX1 in pan-cancer and its mechanism in hepatocellular carcinoma (HCC), however, remains to be further investigated.

Conclusions

The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.

Methods

Bioinformatics approaches were harnessed to scrutinize CBX1's expression profile, its association with tumor staging, and its potential impact on patient outcomes across various cancers. Single-cell RNA sequencing data facilitated the investigation of CBX1 expression patterns at the individual cell level. The CBX1 expression levels in HCC and adjacent non-tumor tissues were quantified through Real-Time Polymerase Chain Reaction (RT-PCR), Western Blotting (WB), and Immunohistochemical analyses. A tissue microarray was employed to explore the relationship between CBX1 levels, patient prognosis, and clinicopathological characteristics in HCC. Various in vitro assays-including CCK-8, colony formation, Transwell invasion, and scratch tests-were conducted to assess the proliferative and motility properties of HCC cells upon modulation of CBX1 expression. Moreover, the functional impact of CBX1 on HCC was further discerned through xenograft studies in nude mice.

Results

CBX1 was found to be upregulated in most cancer forms, with heightened expression correlating with adverse patient prognoses. Within the context of HCC, elevated levels of CBX1 were consistently indicative of poorer clinical outcomes. Suppression of CBX1 through knockdown methodologies markedly diminished HCC cell proliferation, invasive capabilities, migratory activity, Epithelial-mesenchymal transition (EMT) processes, and resistance to Tyrosine kinase inhibitors (TKIs). Contrastingly, CBX1 augmentation facilitated the opposite effects. Subsequent investigative efforts revealed CBX1 to be a promoter of EMT and a contributor to increased TKI resistance within HCC cells, mediated via the IGF-1R/AKT/SNAIL signaling axis. The oncogenic activities of CBX1 proved to be attenuable either by AKT pathway inhibition or by targeted silencing of IGF-1R. Conclusions: The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。