Switching from Fatty Acid Oxidation to Glycolysis Improves the Outcome of Acute-On-Chronic Liver Failure

从脂肪酸氧化转换为糖酵解可改善急性慢性肝衰竭的结果

阅读:6
作者:Zujiang Yu, Jingjing Li, Zhigang Ren, Ranran Sun, Yang Zhou, Qi Zhang, Qiongye Wang, Guangying Cui, Juan Li, Ang Li, Zhenfeng Duan, Yuming Xu, Zhichao Wang, Peiyuan Yin, Hailong Piao, Jun Lv, Xiaorui Liu, Yanfang Wang, Ming Fang, Zhengping Zhuang, Guowang Xu, Quancheng Kan

Abstract

Acute-on-chronic liver failure (ACLF) has a high mortality rate. Metabolic reprogramming is an important mechanism for cell survival. Herein, the metabolic patterns of ACLF patients are analyzed. An in vitro model of ACLF is established using Chang liver cells under hyperammonemia and hypoxia. A randomized clinical trial (ChiCTR-OPC-15006839) is performed with patients receiving L-ornithine and L-aspartate (LOLA) daily intravenously (LOLA group) and trimetazidine (TMZ) tid orally (TMZ group) based on conventional treatment (control group). The primary end point is 90-day overall survival, and overall survival is the secondary end point. By analyzing metabolic profiles in liver tissue samples from hepatitis B virus (HBV)-related ACLF patients and the controls, the metabolic characteristics of HBV-related ACLF patients are identified: inhibited glycolysis, tricarboxylic acid cycle and urea cycle, and enhanced fatty acid oxidation (FAO) and glutamine anaplerosis. These effects are mainly attributed to hyperammonemia and hypoxia. Further in vitro study reveals that switching from FAO to glycolysis could improve hepatocyte survival in the hyperammonemic and hypoxic microenvironment. Importantly, this randomized clinical trial confirms that inhibiting FAO using TMZ improves the prognosis of patients with HBV-related ACLF. In conclusion, this study provides a practical strategy for targeting metabolic reprogramming using TMZ to improve the survival of patients with HBV-related ACLF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。