Lysine acetylation of NKG2D ligand Rae-1 stabilizes the protein and sensitizes tumor cells to NKG2D immune surveillance

NKG2D 配体 Rae-1 的赖氨酸乙酰化可稳定蛋白质并使肿瘤细胞对 NKG2D 免疫监视敏感

阅读:12
作者:Jiemiao Hu, Xueqing Xia, Qingnan Zhao, Shulin Li

Abstract

Shedding, loss of expression, or internalization of natural killer group 2, member D (NKG2D) ligands from the tumor cell surface leads to immune evasion, which is associated with poor prognosis in patients with cancer. In many cancers, matrix metalloproteinases cause the proteolytic shedding of NKG2D ligands. However, it remained unclear how to protect NKG2D ligands from shedding. Here, we showed that the shedding of the mouse NKG2D ligand Rae-1 can be prevented by two critical acetyltransferases, GCN5 and PCAF, which acetylate the lysine residues of Rae-1 to avoid shedding both in vitro and in vivo. In contrast, mutations at lysines 80 and 87 of Rae-1 abrogated this acetylation and thereby desensitized tumor cells to NKG2D-dependent immune surveillance. Notably, the protein levels of GCN5 correlated with the expression levels of the human NKG2D ligand ULPB1 in a human tumor tissue microarray and, more importantly, with prolonged overall survival in many cancers. Our results suggest that the acetylation of Rae-1 protein at lysines 80 and 87 by GCN5 and PCAF protects Rae-1 from shedding so as to activate NKG2D-dependent immune surveillance. This discovery may shed light on new targets for NKG2D immunotherapy in cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。