Modeling cerebral development in vitro with L- MYC-immortalized human neural stem cell-derived organoids

利用 L-MYC 永生化人类神经干细胞衍生的类器官模拟体外大脑发育

阅读:9
作者:Alejandra Velazquez Ojeda, Dina Awabdeh, Blake Brewster, Russell Rockne, Denis O'Meally, Hongwei Holly Yin, Nadia Carlesso, Christine E Brown, Margarita Gutova, Michael E Barish

Abstract

A promising advance for ex vivo studies of human brain development and formulation of therapeutic strategies has been the adoption of brain organoids that, to a greater extent than monolayer or spheroid cultures, recapitulate to varying extents the patterns of tissue development and cell differentiation of human brain. Previously, such studies been hampered by limited access to relevant human tissue, inadequate human in vitro models, and the necessity of using rodent models that imperfectly reproduce human brain physiology. Here we present a novel organoid-based research platform utilizing L-MYC-immortalized human fetal neural stem cells (LMNSC01) grown in a physiological 4% oxygen environment. We visualized developmental processes in LMNSC01 brain organoids for over 120 days in vitro by immunofluorescence and NanoString gene expression profiling. Gene expression patterns revealed by NanoString profiling were quantitatively compared to those occurring during normal brain development (BrainSpan database) using the Singscore method. We observe similar developmental patterns in LMNSC01 organoids and developing cortex for genes characterizing neurons, astrocytes, and oligodendrocytes, and multiple pathways including those involved in apoptosis, neuronal cytoskeleton, neurotransmission, and metabolism. Notable properties of this LMNSC01 platform are its initiation with immortalized authentic human neural stem cells, growth in a physiological oxygen environment, the consistency of the organoids produced, and favorable comparison of their gene expression patterns with those reported for normal cortical development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。