Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device

利用无标记芯片实验室装置快速纯化和多参数表征循环中的小型细胞外囊泡

阅读:1
作者:Manju Sharma # ,Maulee Sheth # ,Holly M Poling ,Damaris Kuhnell ,Scott M Langevin ,Leyla Esfandiari

Abstract

Nano-scale extracellular vesicles are lipid-bilayer delimited particles that are naturally secreted by all cells and have emerged as valuable biomarkers for a wide range of diseases. Efficient isolation of small extracellular vesicles while maintaining yield and purity is crucial to harvest their potential in diagnostic, prognostic, and therapeutic applications. Most conventional methods of isolation suffer from significant shortcomings, including low purity or yield, long duration, need for large sample volumes, specialized equipment, trained personnel, and high costs. To address some of these challenges, our group has reported a novel insulator-based dielectrophoretic device for rapid isolation of small extracellular vesicles from biofluids and cell culture media based on their size and dielectric properties. In this study, we report a comprehensive characterization of small extracellular vesicles isolated from cancer-patients' biofluids at a twofold enrichment using the device. The three-fold characterization that was performed using conventional flow cytometry, advanced imaging flow cytometry, and microRNA sequencing indicated high yield and purity of the isolated small extracellular vesicles. The device thus offers an efficient platform for rapid isolation while maintaining biomolecular integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。