Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2

慢性缺氧后增强的去极化诱导的肺血管收缩需要 EGFR 依赖的 NAD(P)H 氧化酶 2 激活

阅读:5
作者:Charles E Norton, Brad R S Broughton, Nikki L Jernigan, Benjimen R Walker, Thomas C Resta

Aims

Chronic hypoxia (CH) enhances depolarization-induced myofilament Ca(2+) sensitization and resultant pulmonary arterial constriction through superoxide (O(2)(-))-dependent stimulation of RhoA. Because NAD(P)H oxidase (NOX) has been implicated in the development of pulmonary hypertension, we hypothesized that vascular smooth muscle (VSM) depolarization increases NOX-derived O(2)(-) production leading to myofilament Ca(2+) sensitization and augmented vasoconstrictor reactivity following CH. As epidermal growth factor receptor (EGFR) mediates Rac1-dependent NOX activation in renal mesangial cells, we further sought to examine the role EGFR plays in this response.

Conclusion

CH augments membrane depolarization-induced pulmonary VSM Ca(2+) sensitization and vasoconstriction through EGFR-dependent stimulation of Rac1 and NOX 2.

Results

Vasoconstrictor responses to depolarizing concentrations of KCl were greater in lungs isolated from CH (4 wk, 0.5 atm) rats compared to normoxic controls, and this effect of CH was abolished by the general NOX inhibitor, apocynin. CH similarly augmented KCl-induced vasoconstriction and O(2)(-) generation (assessed using the fluorescent indicator, dihydroethidium) in Ca(2+)-permeabilized, pressurized small pulmonary arteries. These latter responses to CH were prevented by general inhibition of NOX isoforms (apocynin, diphenylene iodonium), and by selective inhibition of NOX 2 (gp91ds-tat), Rac1 (NSC 23766), and EGFR (AG 1478). Consistent with these observations, CH increased KCl-induced EGFR phosphorylation, and augmented depolarization-induced Rac1 activation in an EGFR-dependent manner. Innovation: This study establishes a novel signaling axis in VSM linking membrane depolarization to contraction that is independent of Ca(2+) influx, and which mediates myofilament Ca(2+) sensitization in the hypertensive pulmonary circulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。