1α,25-Dihydroxyvitamin D3 ameliorates diabetes-induced bone loss by attenuating FoxO1-mediated autophagy

1α,25-二羟基维生素 D3 通过减弱 FoxO1 介导的自噬来改善糖尿病引起的骨质流失

阅读:6
作者:Yixuan Jiang, Wenqiong Luo, Bin Wang, Zumu Yi, Ping Gong, Yi Xiong

Abstract

Autophagy is vital for maintaining cellular homeostasis through removing impaired organelles. It has recently been found to play pivotal roles in diabetes mellitus (DM), which is associated with increased bone fracture risk and loss of bone density. However, the mechanism whereby autophagy modulates DM-induced bone loss is not fully elucidated. Previous work has shown that 1α,25-Dihydroxyvitamin D3 (1,25D) exerts positive effects on autophagy, thus affecting bone metabolism. Here, we investigated whether autophagy was involved in the regulation of diabetic bone metabolism. Using Micro-CT, Elisa, histology, and histomorphometry analysis, we demonstrated that 1,25D rescues glucose metabolism dysfunction and ameliorates bone loss in diabetic mice. In vitro, 1,25D alleviated primary osteoblast dysfunction and intracellular oxidative stress through reducing prolonged high-glucose-mediated excessive autophagy in primary osteoblasts, reflected by decreased protein level of Beclin1 and LC3. Of note, the autophagy activator rapamycin (RAP) ablated the positive effects of 1,25D in diabetic environment, leading to a marked increase in autolysosomes and autophagosomes, examined by mRFP-GFP-LC3 fluorescence double labeling. The excessive autophagy induced by high glucose was deleterious to proliferation and differentiation of primary osteoblasts. Additionally, biochemical studies identified that PI3K/Akt signaling could be activated by 1,25D, resulting in the inhibition of FoxO1. We confirmed that FoxO1 deficiency alleviated high-glucose-induced autophagy and improved biological functions of primary osteoblasts. Together, our results suggest that the PI3K/Akt/FoxO1 signaling pathway is involved in the osteoprotective effect of 1,25D by attenuating autophagy in diabetes, providing a novel insight for the prevention and treatment of diabetes-caused bone loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。