Thymomegaly, microsplenia, and defective homeostatic proliferation of peripheral lymphocytes in p51-Ets1 isoform-specific null mice

p51-Ets1 亚型特异性缺陷小鼠的胸腺肿大、小脾脏和外周淋巴细胞稳态增殖缺陷

阅读:7
作者:Tsukasa Higuchi, Frank O Bartel, Masahiro Masuya, Takao Deguchi, Kelly W Henderson, Runzhao Li, Robin C Muise-Helmericks, Michael J Kern, Dennis K Watson, Demetri D Spyropoulos

Abstract

Ets1 is a member of the Ets transcription factor family. Alternative splicing of exon VII results in two naturally occurring protein isoforms: full-length Ets1 (p51-Ets1) and Ets1(DeltaVII) (p42-Ets1). These isoforms bear key distinctions regarding protein-protein interactions, DNA binding kinetics, and transcriptional target specificity. Disruption of both Ets1 isoforms in mice results in the loss of detectable NK and NKT cell activity and defects in B and T lymphocytes. We generated mice that express only the Ets1(DeltaVII) isoform. Ets1(DeltaVII) homozygous mice express no p51-Ets1 and elevated levels of the p42-Ets1 protein relative to the wild type and display increased perinatal lethality, thymomegaly, and peripheral lymphopenia. Proliferation was increased in both the thymus and the spleen, while apoptosis was decreased in the thymus and increased in the spleen of homozygotes. Significant elevations of CD8(+) and CD8(+)CD4(+) thymocytes were observed. Lymphoid cell (CD19(+), CD4(+), and CD8(+)) reductions were predominantly responsible for diminished spleen cellularity, with fewer memory cells and a failure of homeostatic proliferation to maintain peripheral lymphocytes. Collectively, the Ets1(DeltaVII) mutants demonstrate lymphocyte maturation defects associated with misregulation of p16(Ink4a), p27(Kip1), and CD44. Thus, a balance in the differential regulation of Ets1 isoforms represents a potential mechanism in the control of lymphoid maturation and homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。