Cell free supernatants of Bifidobacterium adolescentis and Bifidobacterium longum suppress the tumor growth in colorectal cancer organoid model

青春双歧杆菌和长双歧杆菌的无细胞上清液抑制结直肠癌类器官模型中的肿瘤生长

阅读:5
作者:Min Jung Kim #, Myoung-Hyun Song #, Yo-Sep Ji, Ji Won Park, Young-Kyoung Shin, Soon-Chan Kim, Gihyeon Kim, Beomki Cho, Hansoo Park, Ja-Lok Ku, Seung-Yong Jeong3

Abstract

The probiotic gut microbiome and its metabolites are pivotal in regulating host metabolism, inflammation, and immunity. Host genetics, colonization at birth, the host lifestyle, and exposure to diseases and drugs determine microbial composition. Dysbiosis and disruption of homeostasis in the beneficial microbiome have been reported to be involved in the tumorigenesis and progression of colorectal cancer (CRC). However, the influence of bacteria-secreted metabolites on CRC growth is yet to be fully elucidated. In this study, we compared the microbial composition of CRC patients to healthy controls to identify distinct patterns of microbiota-derived metabolites in CRC patients. Metagenomic analysis demonstrated that beneficial bacteria strains; Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum decreased, while Parabacteroides distasonis and Bacteroides ovatus were more prevalent in the CRC patient group. Treatment of cancer organoid lines with microbial culture supernatants from Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum showed remarkable inhibition of cancer growth. This study demonstrates that the bacterial metabolites depleted in CRC patients may inhibit cancer growth and highlights the effects of microbiome-derived metabolites on CRC growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。