Choline chloride and amino acid solutions taste and hydration behavior with experimental thermodynamic properties and COSMO-PC-SAFT calculation

氯化胆碱和氨基酸溶液的味道和水合行为及其实验热力学性质和 COSMO-PC-SAFT 计算

阅读:6
作者:Mohammad Amin Morsali, Behrang Golmohammadi, Hemayat Shekaari

Abstract

Aqueous amino acid solutions have been introduced as dietary supplements for both animals and humans. This study investigates the physicochemical properties of the solutions containing amino acids (L-glycine, D,L-alanine, L-proline), choline chloride, and water at temperature range of 288.15 to 318.15 K. The results show that increasing concentrations of amino acids and choline chloride lead to higher solution densities. Analysis of apparent molar volume (Vφ) and apparent molar isentropic compressibility (κφ) reveals that Vφ values increase with choline chloride concentration and temperature, indicating enhanced solute-solvent interactions, while κφ values decrease, suggesting increased solution compression. Thermodynamic analysis using the Redlich-Mayer model and COSMO-based modeling provides insights into molecular interactions. However, COSMO-based parameters show high average relative deviation percentage (ARD %) values, indicating poor predictive performance for the density of these systems. In contrast, the ePC-SAFT equation of state effectively predicts the densities, particularly for L-proline-based solutions, which show very low ARD % values, indicating high accuracy. The ePC-SAFT model also performs reasonably well for L-glycine solutions but shows poorer results for D,L-alanine-based solutions. The study also examines the sweetness and saltiness criteria (ASV and ASIC) of these solutions. The ASV values, which serve as a sweetness criterion, are higher than the ideal range of 0.5 < ASV < 0.7, suggesting an overly sweet taste. The ASIC values follow a similar trend, indicating increased saltiness. To achieve an appropriate grade of sweetness and saltiness, dilution to lower concentrations of the solution is recommended. Furthermore, the use of choline chloride is found to increase salt intake and enhance the taste of salt, which can be beneficial in amino acid supplements used in animal food.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。