Assessing Multiple Evidence Streams to Decide on Confidence for Identification of Post-Translational Modifications, within and Across Data Sets

评估多个证据流以确定在数据集内和跨数据集识别翻译后修饰的可信度

阅读:4
作者:Oscar M Camacho, Kerry A Ramsbottom, Andrew Collins, Andrew R Jones

Abstract

Phosphorylation is a post-translational modification of great interest to researchers due to its relevance in many biological processes. LC-MS/MS techniques have enabled high-throughput data acquisition, with studies claiming identification and localization of thousands of phosphosites. The identification and localization of phosphosites emerge from different analytical pipelines and scoring algorithms, with uncertainty embedded throughout the pipeline. For many pipelines and algorithms, arbitrary thresholding is used, but little is known about the actual global false localization rate in these studies. Recently, it has been suggested to use decoy amino acids to estimate global false localization rates of phosphosites, among the peptide-spectrum matches reported. Here, we describe a simple pipeline aiming to maximize the information extracted from these studies by objectively collapsing from peptide-spectrum match to the peptidoform-site level, as well as combining findings from multiple studies while maintaining track of false localization rates. We show that the approach is more effective than current processes that use a simpler mechanism for handling phosphosite identification redundancy within and across studies. In our case study using eight rice phosphoproteomics data sets, 6368 unique sites were confidently identified using our decoy approach compared to 4687 using traditional thresholding in which false localization rates are unknown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。