Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat

支配大鼠颌骨肌肉的假定本体感受和伤害感受三叉神经元的表型对比

阅读:6
作者:Mark Connor, Ligia A Naves, Edwin W McCleskey

Background

Despite the clinical significance of muscle pain, and the extensive investigation of the properties of muscle afferent fibers, there has been little study of the ion channels on sensory neurons that innervate muscle. In this study, we have fluorescently tagged sensory neurons that innervate the masseter muscle, which is unique because cell bodies for its muscle spindles are in a brainstem nucleus (mesencephalic nucleus of the 5th cranial nerve, MeV) while all its other sensory afferents are in the trigeminal ganglion (TG). We examine the hypothesis that certain molecules proposed to be used selectively by nociceptors fail to express on muscle spindles afferents but appear on other afferents from the same muscle.

Conclusion

Most masseter muscle afferents that are not muscle spindle afferents express molecules that are considered characteristic of nociceptors, but these putative muscle nociceptors are molecularly diverse. This heterogeneity may reflect the mixture of metabosensitive afferents which can also signal noxious stimuli and purely nociceptive afferents characteristic of muscle.

Results

MeV muscle afferents perfectly fit expectations of cells with a non-nociceptive sensory modality: Opiates failed to inhibit calcium channel currents (I(Ca)) in 90% of MeV neurons, although ICa were inhibited by GABA(B) receptor activation. All MeV afferents had brief (1 msec) action potentials driven solely by tetrodotoxin (TTX)-sensitive Na channels and no MeV afferent expressed either of three ion channels (TRPV1, P2X3, and ASIC3) thought to be transducers for nociceptive stimuli, although they did express other ATP and acid-sensing channels. Trigeminal masseter afferents were much more diverse. Virtually all of them expressed at least one, and often several, of the three putative nociceptive transducer channels, but the mix varied from cell to cell. Calcium currents in 80% of the neurons were measurably inhibited by mu-opioids, but the extent of inhibition varied greatly. Almost all TG masseter afferents expressed some TTX-insensitive sodium currents, but the amount compared to TTX sensitive sodium current varied, as did the duration of action potentials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。