Newly identified APN splice isoforms suggest novel splicing mechanisms may underlie circRNA circularization in moth

新鉴定的 APN 剪接异构体表明,飞蛾中 circRNA 环化可能基于新的剪接机制

阅读:6
作者:Meijing Gao, Yuan Liu, Yun Wang, Xiao Zhang, Sa Dong, Xianjin Liu

Abstract

Circular RNA (circRNA) have long been considered by-products of splicing errors, but the coordination of RNA transcription and exon circularization events remains poorly understood. Here, we investigated this question using genes encoding aminopeptidases N (APNs), which are receptors of Bacillus thuringiensis toxins, in the cotton bollworm, Helicoverpa armigera. We cloned and sequenced the cDNA of ten APN genes (HaAPN1-10) located in the same APN gene cluster, and detected 20 and 14 novel splicing isoforms with exon skipping in HaAPN1 and HaAPN3, respectively, whereas no or very few variants were found in the remaining genes. Further study identified 14 and 6 circular RNA (circRNA) in HaAPN1 and HaAPN3, respectively. Neither novel splicing isoforms nor circRNA were detected in HaAPN2 and HaAPN5. Distinct from the conventional GT/AG splicing signal, short co-directional repeats were involved in the splicing of the linear and circular isoforms of HaAPN1 and HaAPN3. Identification of the splice sites revealed that the linear isoforms may be related in some way to the circularization. Moreover, phylogenetic analysis and detection of circRNA of the APN gene of the diamondback moth, Plutella xylostella (PxAPN3), showed that circRNA formation is relatively conserved during the lepidopteran evolutionary process. These results contribute to an improved understanding of lepidopteran APNs and this novel class of insect circRNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。