Tryptophan rotamer distribution revealed for the α-helix in tear lipocalin by site-directed tryptophan fluorescence

通过定点色氨酸荧光揭示泪液脂质运载蛋白中 α-螺旋的色氨酸旋转异构体分布

阅读:9
作者:Oktay K Gasymov, Adil R Abduragimov, Ben J Glasgow

Abstract

Rotamer libraries are a valuable tool for protein structure determination, modeling, and design. Site-directed tryptophan fluorescence (SDTF) was used in combination with the rotamer model for the fluorescence intensity decays to solve α-helical conformations of proteins in solution. Single Trp mutations located in an α-helical segment of human tear lipocalin were explored for structure assignment. Along with fluorescence λ(max) values, the rotamer model assignment of fluorescence lifetimes fits the backbone conformation. Typically, Trp fluorescence in proteins shows three lifetimes. However, for the α-helix, two lifetimes assigned to t and g(-) rotamers were satisfactory to describe Trp fluorescence intensity decays. The g(+) rotamer is not feasible in the α-helix due to steric restriction. Trp rotamer distributions obtained by fluorescence were compared with the rotamer library derived from X-ray crystallography data of proteins. The Trp rotamer distributions vary for solvent exposed and buried (tertiary interaction) sites. A new strategy using the rotamer distribution with SDTF (RD-SDTF) removes the limitation of regular SDTF and other labeling techniques, in which site-specific differences, e.g., accessibility, are presumed. The RD-SDTF technique does not rely on environmental differences of side chains and is able to detect α-helical structure where all side chains are exposed to solvent. Potentially, this technique is applicable to various proteins including membrane proteins, which are rich in α-helix motif.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。