Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells

减弱的血流诱导 ATP 释放导致人类 ADPKD 囊肿上皮细胞中血流敏感的嘌呤能 Cai2+ 信号缺失

阅读:6
作者:Chang Xu, Boris E Shmukler, Katherine Nishimura, Elzbieta Kaczmarek, Sandro Rossetti, Peter C Harris, Angela Wandinger-Ness, Robert L Bacallao, Seth L Alper

Abstract

Flow-induced cytosolic Ca2+ Ca(i)2+ signaling in renal tubular epithelial cells is mediated in part through P2 receptor (P2R) activation by locally released ATP. The ability of P2R to regulate salt and water reabsorption has suggested a possible contribution of ATP release and paracrine P2R activation to cystogenesis and/or enlargement in autosomal dominant polycystic kidney disease (ADPKD). We and others have demonstrated in human ADPKD cyst cells the absence of flow-induced Ca(i)2+ signaling exhibited by normal renal epithelial cells. We now extend these findings to primary and telomerase-immortalized normal and ADPKD epithelial cells of different genotype and of both proximal and distal origins. Flow-induced elevation of Ca(i)2+ concentration ([Ca2+](i)) was absent from ADPKD cyst cells, but in normal cells was mediated by flow-sensitive ATP release and paracrine P2R activation, modulated by ecto-nucleotidase activity, and abrogated by P2R inhibition or extracellular ATP hydrolysis. In contrast to the elevated ATP release from ADPKD cells in static isotonic conditions or in hypotonic conditions, flow-induced ATP release from cyst cells was lower than from normal cells. Extracellular ATP rapidly reduced thapsigargin-elevated [Ca2+](i) in both ADPKD cyst and normal cells, but cyst cells lacked the subsequent, slow, oxidized ATP-sensitive [Ca2+](i) recovery present in normal cells. Telomerase-immortalized cyst cells also exhibited altered CD39 and P2X7 mRNA levels. Thus the loss of flow-induced, P2R-mediated Ca(i)2+ signaling in human ADPKD cyst epithelial cells was accompanied by reduced flow-sensitive ATP release, altered purinergic regulation of store-operated Ca2+ entry, and altered expression of gene products controlling extracellular nucleotide signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。