Dynamic O-GlcNAcylation coordinates etoposide-triggered tumor cell pyroptosis by regulating p53 stability

动态 O-GlcNAc 糖基化通过调节 p53 稳定性来协调依托泊苷引发的肿瘤细胞焦亡

阅读:5
作者:Jing Wang, Yida Wang, Huan Xiao, Wanyi Yang, Weibo Zuo, Ziming You, Chuanfang Wu, Jinku Bao

Abstract

O-GlcNAcylation, a modification of nucleocytoplasmic proteins in mammals, plays a critical role in various cellular processes. However, the interplay and their underlying mechanisms in chemotherapy-induced tumor regression between O-GlcNAcylation and pyroptosis, a form of programmed cell death associated with innate immunity, remains unclear. Here, we observed that during the etoposide-induced pyroptosis of SH-SY5Y and A549 cells, overall O-GlcNAcylation levels are substantially reduced. Pharmacological inhibition or genetic manipulation of O-GlcNAcylation, such as OGT inhibition or OGA overexpression, sensitized these cells to etoposide-induced pyroptosis both in vitro and in vivo. Mechanistically, mutations at S96 and S149 residues attenuated p53 O-GlcNAcylation, weakening its interaction with MDM2, reducing p53 ubiquitination, and increasing protein stability. These results suggest that S96 may be a putative O-GlcNAcylation site. Therefore, p53 target genes-Fas, DR-5, Puma, and PIDD-were transcriptionally upregulated, leading to activation of the caspase-3-GSDME axis and promoting etoposide-induced pyroptosis in various tumor cells. This study demonstrates a previously uncharacterized association between O-GlcNAcylation and chemotherapy-induced pyroptosis, offering potential therapeutic interventions for pyroptosis-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。