Efficacy and Safety of Asparagusic Acid against Echinococcus multilocularis In Vitro and in a Murine Infection Model

芦笋酸对体外和小鼠感染模型中多房棘球绦虫的疗效和安全性

阅读:17
作者:Zhuanhong Lu, Yating Wang, Chuanchuan Liu, Haining Fan

Abstract

Alveolar echinococcosis (AE) stands as a perilous zoonotic affliction caused by the larvae of Echinococcus multilocularis. There is an imperative need to explore novel therapeutic agents or lead compounds for the treatment of AE. Asparagusic acid, characterized by its low toxicity and possessing antimicrobial, antioxidant, and anti-parasitic attributes, emerges as a promising candidate. The aim of this study was to investigate the in vivo and in vitro efficacy of asparagusic acid against E. multilocularis. Morphological observations, scanning electron microscopy, ROS assays, mitochondrial membrane potential assays, and Western blot were used to evaluate the in vitro effects of asparagusic acid on protoscoleces. The effects of asparagusic acid on vesicles were assessed via PGI release, γ-GGT release, and transmission electron microscopy observations. CellTiter-Glo assays, Caspase3 activity assays, flow cytometry, and Western blot were used for an evaluation of the effect of asparaginic acid on the proliferation and apoptosis of germinal cells. The in vivo efficacy of asparagusic acid was evaluated in a murine AE model. Asparagusic acid exhibited a pronounced killing effect on the protoscoleces post-treatment. Following an intervention with asparagusic acid, there was an increase in ROS levels and a decline in mitochondrial membrane potential in the protoscolex. Moreover, asparagusic acid treatment resulted in the upregulation of PGI and γ-GGT release in metacestode vesicles, concomitant with the inhibition of germinal cell viability. Furthermore, asparagusic acid led to an enhanced relative expression of Caspase3 in the culture supernatant of both the protoscoleces and germinal cells, accompanied by an increase in the proportion of apoptotic germinal cells. Notably, asparagusic acid induced an augmentation in Bax and Caspase3 protein expression while reducing Bcl2 protein expression in both the protoscoleces and germinal cells. In vitro cytotoxicity assessments demonstrated the low toxicity of asparagusic acid towards normal human hepatocytes and HFF cells. Additionally, in vivo experiments revealed that asparagusic acid administration at doses of 10 mg/kg and 40 mg/kg significantly reduced metacestode wet weight. A histopathological analysis displayed the disruption of the germinal layer structure within lesions post-asparagusic acid treatment, alongside the preservation of laminated layer structures. Transmission electron microscopy further revealed mitochondrial swelling and heightened cell necrosis subsequent to the asparagusic acid treatment. Furthermore, asparagusic acid promoted Caspase3 and Bax protein expression while decreasing Bcl2 protein expression in perilesional tissues. Subsequently, it inhibited the expression of Ki67, MMP2, and MMP9 proteins in the perilesional tissues and curbed the activation of the PI3K/Akt signaling pathway within the lesion-host microenvironmental tissues. Asparagusic acid demonstrated a pronounced killing effect on E. multilocularis, suggesting its potential as a promising therapeutic agent for the management of AE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。