Critical role of large-conductance calcium- and voltage-activated potassium channels in leptin-induced neuroprotection of N-methyl-d-aspartate-exposed cortical neurons

大电导钙和电压激活钾通道在瘦素诱导的 N-甲基-d-天冬氨酸暴露皮质神经元的神经保护中起关键作用

阅读:7
作者:Maria Mancini, Maria Virginia Soldovieri, Guido Gessner, Bianka Wissuwa, Vincenzo Barrese, Francesca Boscia, Agnese Secondo, Francesco Miceli, Cristina Franco, Paolo Ambrosino, Lorella Maria Teresa Canzoniero, Michael Bauer, Toshinori Hoshi, Stefan H Heinemann, Maurizio Taglialatela

Abstract

In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-d-aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death, which were concentration-dependent (10-100 ng/ml) and largest when the adipokine was preincubated for 2h before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by paxilline (Pax, 0.01-1 μM) and iberiotoxin (Ibtx, 1-100 nM), with EC50s of 38 ± 10 nM and 5 ± 2 nM for Pax and Ibtx, respectively, close to those reported for Pax- and Ibtx-induced Ca(2+)- and voltage-activated K(+) channels (Slo1 BK channels) blockade; the BK channel opener NS1619 (1-30 μM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10-100 ng/ml) increased intracellular Ca(2+) levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca(2+) levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。