Platelet-mimetic nano-sensor for combating postoperative recurrence and wound infection of triple-negative breast cancer

血小板模拟纳米传感器用于对抗三阴性乳腺癌术后复发和伤口感染

阅读:5
作者:Yufei Liu, Yao Qi, Chen Chen, Yincheng Jin, Shi Du, Jianan Qiao, Jing Yao

Abstract

Tumor recurrence mainly triggered by tumor residual cells significantly contributes to mortality following breast tumor resection, and meanwhile post-surgical bacterial wound infections may accelerate tumor recurrence due to a series of infection-related complications. In this study, a nano-sensor system, Van-ICG@PLT, is constructed by a membrane camouflage and small molecule drug self-assembly strategy. This nano-sensor harnesses the innate tropism of platelets (PLT) to deliver vancomycin (Van) and indocyanine green (ICG) to surgical incisions, effectively eliminating both residual tumor cells and bacterial infections. Our findings demonstrate that Van-ICG@PLT preferentially accumulates at surgical wound. Under near-infrared (NIR) laser irradiation, Van-ICG@PLT exhibits significant cytotoxicity against 4T1 cells. Additionally, it is found to significantly promote ROS production thus inhibiting Staphylococcus aureus (S. aureus) growth, underscoring the synergistic benefits of phototherapy in combination with antibiotic treatment. In the 4T1 post-surgery recurrence mice model, Van-ICG@PLT is shown to efficiently ablate tumors in tumor-bearing mice (tumor inhibition rate of about 83%), and it demonstrates an excellent anti-infective effect in mice abscess models. Taken together, Van-ICG@PLT represents a promising paradigm in post-surgical adjuvant therapy (PAT). Its dual benefit in inhibiting cancer growth and promoting antibacterial activity makes Van-ICG@PLT a valuable addition to the existing arsenal of therapeutic options available for breast cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。