Stratification of nucleoside analog chemotherapy using 1-(2'-deoxy-2'-18F-fluoro-β-D-arabinofuranosyl)cytosine and 1-(2'-deoxy-2'-18F-fluoro-β-L-arabinofuranosyl)-5-methylcytosine PET

使用 1-(2'-脱氧-2'-18F-氟-β-D-阿拉伯呋喃糖基)胞嘧啶和 1-(2'-脱氧-2'-18F-氟-β-L-阿拉伯呋喃糖基)-5-甲基胞嘧啶 PET 对核苷类似物化疗进行分层

阅读:11
作者:Jason T Lee, Dean O Campbell, Nagichettiar Satyamurthy, Johannes Czernin, Caius G Radu

Conclusion

These findings support the utility of PET-based phenotyping of tumor nucleoside metabolism for guiding the selection of NA prodrugs.

Methods

Isogenic murine leukemic cell lines with defined dCK and CDA activities were generated by retroviral transduction. A cell viability assay was used to determine the sensitivity of the isogenic cell lines to the dCK-dependent NA prodrugs gemcitabine and clofarabine. In vitro enzymatic and cell-based tracer uptake assays and in vivo PET with (18)F-FAC and l-(18)F-FMAC were used to predict tumor responses to gemcitabine and clofarabine.

Results

dCK and CDA activities measured by kinase and tracer uptake assays correlated with the sensitivity of isogenic cell lines to gemcitabine and clofarabine. Coexpression of CDA decreased the sensitivity of dCK-positive cells to gemcitabine treatment in vitro by 15-fold but did not affect responses to clofarabine. Coexpression of CDA decreased (18)F-FAC but not l-(18)F-FMAC, phosphorylation, and uptake by dCK-positive cells. (18)F-FAC and l-(18)F-FMAC PET estimates of the enzymatic activities of dCK and CDA in tumor implants in mice were predictive of responses to gemcitabine and clofarabine treatment in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。